
Jacob Howard

A Pragmatic
Tour of Docker
Filesystems

Docker Captain
Founder @ Mutagen

@xenoscopic

1. They’re Not Beyond Understanding
The filesystem landscape is complex, but that complexity is essential
and it can be leveraged for better performance.

1. They’re Not Beyond Understanding
The filesystem landscape is complex, but that complexity is essential
and it can be leveraged for better performance.

2. They’re Not Infinitely Performant
Different filesystems have different purposes, behaviors, features,
and performance characteristics.

The Short Version: Container
Filesystems Aren’t Magic...

Core Concepts:
Containers and
Related Filesystems

What Are Containers?
Convenient isolation and portability

● Containers combine Linux kernel
mechanisms like namespaces and
cgroups into a unified abstraction

● Namespaces allow processes to have
different views of OS resources

● Mount namespaces regulate the
filesystems that containers can see

● Multiple filesystems are used to support the
container abstraction

Which Filesystems Enter
the Picture?
There are essentially five categories:

● Images
● Container root filesystems
● Bind mounts
● Volumes
● Temporary filesystems

You can and should leverage each of these.

● Snapshots of a filesystem with metadata
● Built and distributed in a layered fashion
● Derived from a base image
● Stored and distributed as tarballs
● Standardized by OCI
● Excellent storage for tools (and some

dependencies)

Images
Static distributable “filesystem” roots

0af7c461
c965b348
5b87221a
a8c429cf
c967b2ef

● Layers of an image converted to a
mountable filesystem

● OverlayFS is the primary mechanism
○ Other storage drivers exist

● Can also track changes to generate new
image layers from temporary containers

● Mutable but not persistent
● Reasonable performance for simple tasks

Container Root Filesystems
Images reified for use by containers

● Existing filesystem paths made accessible in
different locations (even. across namespaces)

● Not something specific to containers
● No performance penalty natively
● Implemented using virtual filesystems in

Docker Desktop
○ gRPC-FUSE on macOS (previously osxfs)
○ 9P on Windows (but native via WSL2)

● Excellent for code you need to edit

Bind Mounts
Host files made available to containers

● Bind mounts with arbitrary storage
● Just folders in Docker Desktop

○ But inside the virtual machine!
● Plugins exist for alternative storage
● Can be attached to multiple

containers simultaneously
● Excellent performance characteristics
● Great for storing data and/or code

Volumes
Persistent, performant, mutable storage

TERMINAL

$ docker volume ls

DRIVER VOLUME NAME

local project_code_1

local project_data_1

(VM)$ ls /var/lib/docker/volumes

project_code_1 project_data_1

● Standard Linux tmpfs filesystems
● Good performance
● No persistence

○ Not a good option for code

Temporary Filesystems
Ephemeral in-memory storage

Performance
Considerations for
Containerized
Development

Developer Tools Are
Different (and Demanding)
● Filesystem access very different than casual

computing or production use cases
● Assets loaded dynamically and repeatedly
● Typically O(nfile) behavior in terms of getdents,

stat, open, read, and close system calls
● These don’t behave as well on virtual filesystems
● Modern dependency management can easily

bring in 10-100K files (or more)
● Also brutal in terms of CPU (e.g. compiling) and

memory usage (e.g. linking)

If things are fast enough, just leave them
There’s no point in prematurely optimizing.

Figure out what slow programs are actually doing
Macrobenchmarks aren’t very informative. Microbenchmarks of the
wrong thing are irrelevant. Understand your tools’ system calls.

Perform comparative benchmarks of relevant
operations on relevant systems
Use the actual software (or a representative simulation) and
hardware to compare filesystems and understand potential gains.

How Should We Approach
Filesystem Performance?

Step 0
Understand Which Filesystems Are Being Used

TERMINAL

Drop into a shell inside the container:

(HOST)$ docker exec -it <container> /bin/sh # Or...

(HOST)$ docker-compose exec <service> /bin/sh

Query the filesystems mounted in the container’s mount namespace

using the df utility (Alpine-based containers will require using

“apk add coreutils” first):

$ df -T

Filesystem Type Used% Mounted on

overlay overlay 14% /

grpcfuse fuse.grpcfuse 0% /code

/dev/vda1 ext4 0% /data

Step 1
Time Operations

TERMINAL

$ time git status

…

real 0m0.054s

user 0m0.005s

sys 0m0.019s

$ time go build ./pkg/…

real 0m4.479s

user 0m8.790s

sys 0m2.770s

Start by using
high-level timing to
identify problematic
operations.

Step 2
Trace Operations

TERMINAL

$ strace -f -c git status

...

% time seconds usecs/call calls syscall

------ ----------- ----------- --------- ----------------

 41.78 0.017643 19 916 lstat64

 15.27 0.006447 25 250 getdents64

 12.03 0.005079 24 208 openat

 8.52 0.003597 22 159 close

 6.41 0.002705 17 152 fstat64

 4.51 0.001905 17 107 read

...

Once you know which
operations are slow,
use tools like strace
to understand what
they’re actually doing.

Step 3
Trace in Detail

TERMINAL

$ strace -f git status 2>&1 | grep ‘lstat64’

lstat64("cmd/completion.go", {st_mode=S_IFREG|0644,

st_size=451, ...}) = 0

...

$ strace -f go build ./pkg/... 2>&1 | grep ‘jacob’

...

openat(AT_FDCWD, "/home/jacob/mutagen/pkg/configuration",

O_RDONLY|O_LARGEFILE|O_CLOEXEC) = 3

...

If programs are
spending a suspicious
amount of time doing
something, dive into
low-level traces to
understand exactly
what’s going on.

The Next Steps...
(Depending on your situation)

Help the computer
do less work
Identify suspicious or
unnecessary work being
done by tools and scripts.
Removing this work is
easier than optimizing.

Dig deeper with
other tools
Use more advanced strace
features or tools like eBPF
to delve even deeper into
slow system calls.

Try alternatives and
understand gains
Perform the same
operations on different
filesystems and
understand the potential
gains and tradeoffs.

https://aosabook.org/en/posa/ninja.html

Recommendations,
Strategies, and
Rules of Thumb

Images Root
Filesystems

Virtual
Filesystems Volumes Temporary

Filesystems

Host-Editable Yes No Yes Varied No

Mutable No Yes Yes Yes Yes

Persistent Yes No Yes Yes No

Performance High High Low-Medium High High

Ease of Use Varied Trivial Trivial Varied Complex

Understand How Container
Filesystems Compare
Performance isn’t the entire picture...

Use the Simplest Solution
That’s Fast Enough

Start with bind
mounts, defer
complex solutions
Complexity is easy to add
but hard to remove. Using
it sparingly helps to identify
bottlenecks.

Help the computer
work faster by
doing less
We’re spoiled by
performance, but
computers aren’t magic.

Prefer built-in
and/or idiomatic
solutions
Before reaching for a
third-party solution,
understand exactly why
you need it.

Audit Your
Code Size

TERMINAL

$ du -h -d1

8.0K ./database

 24M ./frontend

 16K ./web

 24K ./api

 24M .

$ du -h -d1 frontend

 24M frontend/node_modules

 24M frontend

$ find frontend/node_modules | wc -l

 4391

It’s very easy to bring in
hundreds of MBs of
dependencies, even
with a simple project.

Auditing your code
and dependencies can
help the computer do
less work.

Avoid Crossing the
Host/VM Boundary
● Crossing the host/VM boundary turns

system calls into RPC calls
● Understand what can be static, cached, or

dynamically generated inside the VM
● Bind mount only what you need to edit, not

dependencies and standard libraries
● Work inside the VM if possible

● mmap’d files (e.g. databases)

● inode-sensitive files (e.g. .git directories)

● Machine-specific code (e.g. node_modules)

● Huge updating files (e.g. logs)

● Standard libraries

● Dependencies

Don’t Bind Mount Certain
Files Across the Host/VM
Boundary...

Use Filesystem
Watching if Possible
Many tools and frameworks can use
filesystem watching to optimize rebuilds
and avoid rescanning an entire codebase.
Use these features if you can!

(But note that not all filesystems support
event notifications, and they can be spotty...)

Consider Synchronization
as a Nuclear Option
● If you need to edit a large codebase,

synchronize it into a volume
● Same rules apply: keep it minimal
● Keep the volume external from your

Compose project to amortize sync costs
● Experiment with different tools

○ Mutagen, docker-sync, VS Code, etc.

Watch the Docker Desktop
Release Notes, join discussions,
and share ideas!

Stay Up-To-Date
and Collaborate

Summary
● Different filesystems have different

features, behaviors, and performance
● Understand all of the options and

leverage what you need
● Check what your tools are actually doing
● The best option is to do less work
● Be kind and share ideas

Thanks for listening!
Send me your questions, ideas,
and feedback

@xenoscopic

